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Telemetry Ranging: Signal Processing

Jon Hamkins∗, Peter Kinman†, Hua Xie∗, Victor Vilnrotter∗, and Sam Dolinar∗

ABSTRACT. — This article describes the details of the signal processing used in a

telemetry ranging system in which timing information is extracted from the downlink

telemetry signal in order to compute spacecraft range. A previous article describes

telemetry ranging concepts and architecture, which are a slight variation of a scheme

published earlier. As in that earlier work, the telemetry ranging concept eliminates

the need for a dedicated downlink ranging signal to communicate the necessary timing

information.

The present article describes the operation and performance of the major receiver func-

tions on the spacecraft and the ground – many of which are standard tracking loops

already in use in JPL’s flight and ground radios – and how they can be used to provide

the relevant information for making a range measurement. It also describes the imple-

mentation of these functions in software, and performance of an end-to-end software

simulation of the telemetry ranging system.

I. Introduction

A previous article [1] describes the basic concepts behind both telemetry ranging and

conventional two-way ranging. In brief, a signal is sent from a ground station to the

spacecraft, which reacts and sends a return signal to Earth. For a return signal arriving

at the ground station at time tR, we can back-calculate the time tT associated with

the originating ground transmission, which provides the two-way time delay tR − tT .

Mathematically, tT is determined by solving for the lower limit of an integral in a
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canonical range equation determined from Equations (3), (4), and (5) of [1]:

∫ tR

tT

ψ̇T (t) dt = ψT (tR)− ψT (tT ) (1)

=




ψT (tR)− ψR(tR), conventional two-way ranging

ψT (tR)− ψS(tS), telemetry ranging.
(2)

In (1), all values are known except tT : ψT (tR) is the phase of the uplink transmis-

sion sampled at a known time tR on the ground; ψT (tT ) is the phase of the same

uplink transmission recorded and retrievable from Deep Space Station (DSS) records

at the earlier unknown time tT ; and a record of the derivative of the transmitted phase{
ψ̇T (t), t ∈ [tT , tR]

}
is assumed to be available back to the departure time tT of the

corresponding uplink signal. The two-way time delay computed from (2) includes some

processing delays that must be removed by calibration. See the previous article [1] for

details on relating the time delay tR − tT calculated from (2) to the two-way geometric

delay of interest.

Conventional two-way ranging and telemetry ranging use different methods to infer the

value of the transmitted phase ψT (tT ) present at the DSS transmitter at the (initially)

unknown time tT . In conventional ranging, this phase is inferred by measuring the

received phase ψR(tR) when the return signal from the spacecraft arrives at the DSS

receiver. In telemetry ranging, this same phase is inferred by measuring a phase ψS(tS)

at the spacecraft at an unknown time tS but associated with a telemetry frame observed

later at the DSS receiver at time tR. These two alternative methods for evaluating ψT (tT )

are shown in (2).

In this article we describe, for telemetry ranging only, the signal processing steps per-

formed at the DSS and on the spacecraft to obtain the two phases ψT (tR), ψS(tS) needed

in (2), without having explicit knowledge of the transmitter time tT or the spacecraft

time tS corresponding to a given arrival time at the receiver tR. In Section II, we describe

the mathematical form of the uplink and downlink signals used by a telemetry ranging

system. Sections III and IV describe the signal processing at the spacecraft receiver

and DSS receiver, respectively. These signal models form the basis for our detailed

description of the uplink and downlink signal processing steps in the remainder of this

article. Sections V and VI describe a software implementation of the signal processing,

and Section VII gives performance analysis and numerical results.

II. Signal Model

A. Uplink PN Range Signal

A Pseudo-random Noise (PN) ranging signal is formed by modulating a range code, or

sequence, using pulse shaping and a residual carrier. The signal has the form

s(t) =
√

2Pt cos[2πfct+ φrφPN(t)], (3)

2



where

Pt is the total signal power (4)

fc is the carrier frequency in Hz (5)

φr is the peak modulation index in radians, (6)

and where φPN(t) is the PN waveform we shall describe next. A functional block diagram

of the uplink signal generation is shown in Figure 1.
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Figure 1. Generation of the uplink ranging signal s(t) and uplink ranging statistics tT and ψT (tT ).

1. The PN Sequence

The basic building block of the ranging signal is a PN sequence, or chip sequence, {dk},
shown in the leftmost block of Figure 1. In this section, we describe three closely related

chip sequences. One of them is supported by the Deep Space Network (DSN) [2] and

was used on the New Horizons mission [3], and the other two are CCSDS standards [4].

All three are composite codes built from the six component codes shown in Table 1.

Each component code is periodic, so that the kth output of the jth code is

Cj(k) = Cj(k mod Lj), (7)

where Lj is the period of the jth code. C1(·) simply toggles between 1 and 0 and is

called the range clock. The periods of the component codes are 2, 7, 11, 15, 19, and 23.

The component codes have historically been referred to as PN codes, giving rise to the

name “PN ranging” for a ranging system that uses them. We follow this well-accepted

usage from the literature, notwithstanding that a reasonable argument could be made

that the component codes are not PN codes, because most of them are not the output of

a maximum length shift register, and their spectrum does not look like that of random

data.
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Table 1. Component codes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

C1 1 0

C2 1 1 1 0 0 1 0

C3 1 1 1 0 0 0 1 0 1 1 0

C4 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0

C5 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0

C6 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0

The three PN range codes are given by:

dDSN(k) = {C1(k) OR [C2(k) AND C3(k) AND C4(k) AND C5(k) AND C6(k)]}′ (8)

dT2B(k) = sgn (2C ′1(k) + C ′2(k)− C ′3(k)− C ′4(k) + C ′5(k)− C ′6(k)) (9)

dT4B(k) = sgn (4C ′1(k) + C ′2(k)− C ′3(k)− C ′4(k) + C ′5(k)− C ′6(k)) , (10)

where in this context, prime notation converts a binary-coded sequence of 0s and 1s

into an equivalent binary sequence of +1s and −1s:

c′ =





1, if c = 1

−1, if c = 0.
(11)

The PN range code in (8) is used in the DSN [2]. The PN range code in (9) is the

weighted-voting balanced Tausworthe code with v = 2, known as T2B [4]. The PN

range code in (10) is the weighted-voting balanced Tausworthe code with v = 4, known

as T4B [4]. The constructions of the T2B and T4B codes differ only in the number of

“votes” that the range clock C ′1(·) is given.

Since the periods of the component codes are relatively prime, each of the DSN, T2B,

and T4B range codes has period

L = lcmj:1≤j≤6{Lj} =

6∏

j=1

Lj = 2× 7× 11× 15× 19× 23 = 1, 009, 470. (12)

In the DSN code, the 5-argument logical AND in the square bracket term of (8) is

mostly logically false, so that the DSN range code is highly correlated with the range

clock. Similarly, the extra range clock voting power in T2B and T4B produces a high

correlation with the range clock. For example, the T4B sequence defined in (10) begins

1,−1, 1,−1, 1, 1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1. (13)

A positive correlation with the C ′1 range clock is readily apparent: among the first 20

sequence values shown, 19 agree with C ′1.
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2. Pulse Shaping

The PN sequence of +1s and −1s is modulated within the duration of one chip time T

by a pulse shape p(t). This produces a periodic waveform φPN(t), with period 1,009,470

chip times, defined by

φPN(t) =

∞∑

k=−∞
dkp(t− kT ), (14)

where

dk ∈ {−1,+1} is the range code (PN sequence) (15)

T is the chip duration (16)

p(t) is the pulse shape defined over the interval [0, T ). (17)

The range signaling established for the DSN [2] and in the international standards [4]

permits either a rectangular pulse shape,

p(t) =





1, t ∈ [0, T )

0, else,
(18)

when the chip rate is low, or a positive half-sine pulse shape,

p(t) =





sin(πt/T ), t ∈ [0, T )

0, else,
(19)

for typical higher chip rates. The waveform φPN(t) resulting when the T4B sequence

is used with either a rectangular or a half-sine pulse shape is shown in Figure 2. The

values of the T4B sequence can be seen as positive and negative regions of the φPN(t)

waveform when the rectangular pulse shape is used. With the half-sine pulse shape, a

pure sine wave results in those regions that match C ′1.

By comparison, the “range clock waveform” φRC(t) that would result from directly

modulating the range clock sequence C ′1(k) is

φRC(t) =





sgn(sin(2πfRCt)), p(t) is rectangular shape

sin(2πfRCt), p(t) is half-sine shape,
(20)

where fRC , 1/(2T ) is the frequency of the range clock waveform (i.e., square wave

or sine wave) resulting from the C1 clock sequence. Note that the period of the range

clock waveform φRC(t) is two chip durations, i.e., 2T . For each of the three sequences

we defined, the PN range code waveform φPN(t) is well correlated with the pure range

clock waveform φRC(t). For the T4B sequence used as the example in Figure 2, the

correlation coefficient is approximately 0.93.
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Figure 2. The waveform φPN(t) resulting when the T4B sequence is used with either (a) a rectangular

pulse shape or (b) a half-sine pulse shape.

3. Digital to Analog Conversion

In a modern implementation, most of the processing is done digitally in discrete time.

The sample times may be denoted ti , iTs, as indicated in Figure 1, where Ts is a sample

period. In this way, the blocks preceding the digital-to-analog converter (DAC) are not

time-sensitive, and indeed they may be pre-computed and stored in a buffer. The DAC

takes discrete samples of the form cos(φrφPN(ti)) and produces a continuous-time signal

of the form cos(φrφPN(t)). At one second intervals, controlled by a one pulse-per-second

(1-pps) signal, the time t and associated range code phase ψT (t) being processed by the

DAC are recorded at a ground station transmission reference point PT.

The transmitted uplink signal is customarily compensated for Doppler, using pre-

dicts developed from ephemerides obtained via navigation solutions of previous ranging

tracks. This is done by adjusting fc in (3) higher or lower, as shown in Figure 1,

introducing some time-dependence on the uplink frequency.

B. Downlink Telemetry Signal

The role of the downlink in a telemetry ranging system is to convey the phase ψS(tS)

tracked at the spacecraft back to the DSS as part of the normal downlink telemetry

stream. Analogously to the uplink signal, the downlink signal is generated from a
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binary sequence {dk} of telemetry data that is pulse-shaped, phase-modulated, and

up-converted. The form of the signal is

s(t) =
√

2Pt cos[2πfct+ φdφTM(t)], (21)

where

Pt is the total signal power (22)

fc is the downlink carrier frequency in Hz (23)

φd ∈ (0, π/2] is the telemetry data modulation index in radians (24)

φTM(t) =

∞∑

i=−∞
dkp(t− iT ) (25)

dk ∈ {−1,+1} is the downlink telemetry data (26)

T is the symbol duration (27)

p(t) is a pulse-shape defined over the interval [0, T ). (28)

The spacecraft receiver’s range code phase measurements are encoded within the down-

link telemetry data {dk}. A functional block diagram of this is shown in Figure 3. In

a slight abuse of notation, we re-use Pt, fc, dk, T , and p(t) for describing the downlink

signaling. It should be understood that these parameters have the same meanings as in

the uplink signal, but in general they will not have the same values used in the uplink

signal.
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Figure 3. Generation of the downlink telemetry signal s(t).

Unlike the generation of the uplink signal, the telemetry ranging concept does not require

an accurate spacecraft clock or the ability to accurately measure delays on board. The

clock shown in Figure 3 may be slow or have high Allan variance. What is important,

however, is the ability to generate a “start of codeword” signal that corresponds with

the time the DAC produces the first symbol of a codeword, at the spacecraft reference
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point PS. This signal, occurring at time tS, controls when to latch (record) the spacecraft

range code phase measurement ψS(tS).

III. Signal Processing in the Uplink Receiver

The range code phase measurement ψS(tS) needed in (2) is carried out by tracking the

uplink signal. This section describes the signal processing used in the spacecraft receiver

to track the uplink carrier phase, fractional PN chip timing, and range code phase.

The spacecraft receiver down-converts, digitizes, and tracks the uplink signal. A func-

tional block diagram of the spacecraft receiver is shown in Figure 4. For the moment,

we do not consider analog-to-digital conversion and discuss each of the signal processing

steps in the figure in the analytically convenient continuous-time basis. Section V will

remove this assumption and describe the discrete-time implementation.
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Figure 4. The uplink receiver on board the spacecraft.

We will step through each of the signal processing functions shown in Figure 4. To

begin, the spacecraft receives a noisy, delayed version of (3), which can be represented

as

r(t) = s′(t) + n(t), (29)

where s′(t) is a delayed version of the transmitted signal s(t), and n(t) is a white Gaus-

sian noise process with two-sided spectral density N0/2. The received signal is filtered,

so that n(t) may be taken to be a bandpass process with zero power at frequencies

outside of the signal band.

In (29), the argument t is the local spacecraft time reference. The spacecraft reference

may have an unknown offset, drift, or instability with respect to the ground time ref-

erence, and so the spacecraft makes no attempt to measure a one-way delay based on

its observation of r(t). Instead, the job of the spacecraft signal processing is simply to

track the phase of the received range code waveform φ′PN(t) present within s′(t) as it

arrives. This tracked phase can be latched at any moment triggered by other spacecraft

events.

The uplink delay may be time-varying due to the dynamically changing spacecraft range.

This introduces a Doppler shift in the received carrier frequency, as well as a delay in
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the time of the arriving chips. As a result, the received signal can be written [5]

r(t) = s′(t) + n(t)

=
√

2Pt cos[j2πf ′ct+ θ0 + φrφ
′
PN(t)] + n(t), (30)

where f ′c is the Doppler-shifted received carrier frequency, θ0 is an unknown phase offset,

and φ′PN(t) is the PN range code waveform as received at the spacecraft. In general,

the Doppler-shifted frequency f ′c can itself be time-varying, but this is a second-order

effect that can usually be ignored. For example, if the spacecraft is moving away from

the DSS at constant non-relativistic velocity v, then f ′c = fc(1− v/c).

A. Down-Conversion to Baseband

The received signal r(t) is down-converted to baseband in the usual way, by mixing it

with a local oscillator, as shown in Figure 5. The local oscillator frequency is f̂ ′c, which

is the receiver’s estimate of the arriving frequency f ′c.

The down-conversion results in the quadrature components [6]

rI(t) , LPF
[
r(t)
√

2 cos
(

2πf̂ ′ct
)]

=
√
Pt cos(φrφ

′
PN(t) + θ(t)) + nc(t) (31)

rQ(t) , LPF
[
−r(t)

√
2 sin

(
2πf̂ ′ct

)]
=
√
Pt sin(φrφ

′
PN(t) + θ(t)) + ns(t), (32)

where

θ(t) = θ0 + 2π
(
f ′c − f̂ ′c

)
t. (33)

For operational spacecraft orbiting Mars or in cruise mode, the ephemerides are typically

accurate, and thus f̂ ′c is sufficiently close to f ′c that the residual error θ(t) is a slowly

varying phase, typically on the order of 10−3 Hz, implying a change of one cycle or 2π

radians over 1,000 seconds.

In (31) and (32), nc(t) and ns(t) are each low-pass white Gaussian noise processes with

two-sided power spectral density N0/2 within the signal band. The low-pass filter has
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Figure 5. The received signal is down-converted.
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eliminated the double frequency terms from (31) and (32). Thus, the complex baseband

representation of the received signal is

r̃(t) , rI(t) + jrQ(t) =
√
Pt exp[j(φrφ

′
PN(t) + θ(t))]︸ ︷︷ ︸

, s̃(t)

+ñ(t), (34)

where s̃(t) is the complex baseband representation of the noise-free signal and ñ(t) ,

nc(t) + jns(t) is the low-pass white noise. One can relate the bandpass representation

to the complex baseband r̃(t) by

r(t) =
√

2 Re
[
r̃(t)ej2πf̂

′
ct
]
, (35)

which can be verified by plugging (34) into (35), comparing to (30), and noting that

the bandpass noise has quadrature representation [7]

n(t) =
√

2nc(t) cos
(

2πf̂ ′ct
)
−
√

2ns(t) sin
(

2πf̂ ′ct
)
. (36)

We may rewrite (34) as

r̃(t) =
√
Pte

jθ(t) [cos(φrφ
′
PN(t)) + j sin(φ′PN(t)φr)] + ñ(t). (37)

When p(t) is the rectangular pulse shape, we have φ′PN(t) ∈ {−1,+1}, and so (37)

becomes

r̃(t) =
√
Pte

jθ(t) [cos(φr) + jφ′PN(t) sin(φr)] + ñ(t) (38)

=
√
Pce

jθ(t) + j
√
Pre

jθ(t)φ′PN(t) + ñ(t), (39)

where the carrier power and ranging signal power are, respectively,

Pc = Pt cos2(φr) (40)

Pr = Pt sin2(φr), (41)

and the total power is Pt = Pc + Pr. For example, when φr = 1.23, Pt = 1, θ(t) = 0,

N0 = 0, and p(t) is as defined in (18), then we have
√
Pc =

√
Pt cos(φr) ≈ 0.33 and√

Pr =
√
Pt sin(φr) ≈ 0.94, and so (39) becomes

r̃(t) ≈ 0.33 + j0.94φ′PN(t). (42)

This is shown in the solid lines in the upper part of Figure 6. If θ(t) = π/16 and the

other parameters are the same, (39) becomes

r̃(t) =
√
Pc cos

( π
16

)
−
√
Pr sin

( π
16

)
φ′PN(t)

+ j
(√

Pc sin
( π

16

)
+
√
Pr cos

( π
16

)
φ′PN(t)

)
(43)

≈ 0.33− 0.18φ′PN(t) + j(0.07 + 0.92φ′PN(t)). (44)

This is shown in the dashed lines in the upper part of Figure 6.
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Figure 6. The complex baseband ranging signal of the T4B code used with the rectangular pulse shape

(upper) and half-sine pulse shape (lower), φr = 1.23, Pt = 1, θ(t) = 0, and N0 = 0.
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On the other hand, when p(t) is the half-sine pulse shape, the carrier and ranging signal

powers in the fundamental sidebands are, respectively [2]1

Pc = Pt J
2
0 (φr) (45)

Pr = 2Pt J
2
1 (φr), (46)

where Jn(·) is the nth order Bessel function of the first kind. In this case, the carrier and

ranging signal powers Pc and Pr as defined here sum to less than the total transmitted

power Pt. The higher-harmonic sidebands represent wasted power, because only the

power in the fundamental sidebands contribute to the range measurements.

The lower part of Figure 6 illustrates r̃(t) for the two examples above, except with p(t)

taking on the half-sine shape defined in (19).

B. Carrier Tracking of Residual Carrier Signal

The goal of carrier tracking is to lock onto and track θ(t) in (34). When the signal

contains a residual carrier, the phase θ(t) is tracked with a phase-locked loop (PLL),

as illustrated in Figure 7. The PLL takes in the complex-baseband received signal r̃(t)

from (34), mixes it with a complex carrier phase estimate w̃(t) , exp[−jθ̂(t)], takes the

imaginary part, filters it, and sends the resulting error signal to a voltage controlled

oscillator (VCO). Since this design is operating at baseband (DC), the VCO is not

actually oscillating; instead, it is simply producing a complex conjugate phase estimate

w̃(t). The operation of the PLL is described by the pseudo-code in Algorithm 1.

VCO
Loop
Filter

Im(·)
ỹ(t)

r̃(t)

w̃(t)

1/
√

P̂c

z(t) Error signal

δ(t)

θ̂(t)

Figure 7. Continuous time model of phase-locked loop.

Using (34), the PLL in Figure 7 computes the phase-corrected output

ỹ(t) , r̃(t)w̃(t) (47)

=
√
Pt exp[j(φrφ

′
PN(t) + ∆θ(t))] + ñ′(t), (48)

where

∆θ(t) = θ(t)− θ̂(t), (49)

1In [2], the modulation index parameter is given in radians rms. Here, φr is the peak modulation index

in radians. This accounts for a
√

2 difference in the formulas for carrier and signal powers.
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Algorithm 1 Phase-locked loop.

1: while input present do

2: ỹ(t)← r̃(t) · w̃(t) {Mix input signal with VCO output}
3: δ(t)← Im (ỹ(t)) /

√
P̂c {Compute error signal}

4: θ̂(t)← Loop filter(δ(t)) {Apply loop filter to get carrier phase estimate}
5: w̃(t)← VCO(θ̂(t)) {Apply voltage δ to VCO}
6: end while

and where ñ′(t) , ñ(t)w̃(t) has the same statistics as ñ(t).

Thus,

z(t) , Im(ỹ(t)) (50)

=
√
Pt sin(φrφ

′
PN(t) + ∆θ(t)) + n′s(t), (51)

where n′s(t) = Im(ñ′(t)). If the PLL is operating with small phase error, ∆θ(t) � 1,

then

cos[∆θ(t)] ≈ 1 (52)

sin[∆θ(t)] ≈ ∆θ(t), (53)

so that (51) becomes

z(t) =
√
Pt[sin(φrφ

′
PN(t)) cos(∆θ(t)) + cos(φrφ

′
PN(t)) sin(∆θ(t))] + n′s(t) (54)

≈
√
Pt[sin(φrφ

′
PN(t)) + cos(φrφ

′
PN(t))∆θ(t)] + n′s(t) (55)

=
√
Pt cos(φrφ

′
PN(t))∆θ(t) + n′′s (t), (56)

where n′′s (t) ,
√
Pt sin(φrφ

′
PN(t)) + n′s(t). When p(t) is the rectangular pulse shape, we

have

z(t) ≈
√
Pt cos(φr)∆θ(t) + n′′s (t) (57)

=
√
Pc∆θ(t) + n′′s (t). (58)

The signal component present in n′′s (t) is mitigated by the low-pass loop filter, but does

give rise to a floor, as discussed in Section VII. This means that the output of the

loop filter is proportional to the phase error ∆θ(t) plus noise, which drives the VCO to

continuously track the received phase.

C. Chip Timing Tracking with PLL

The final output of the carrier-tracking PLL is the mixer output ỹ(t) in (48), which is the

received complex baseband signal with the varying carrier phase θ(t) mostly removed,

i.e., except for the tracking error ∆θ(t). The next step, as depicted in Figure 4, is to

track the PN chip timing of φ′PN(t).

The offset of the received range code waveform φ′PN(t) relative to the spacecraft’s refer-

ence waveform φPN(t) can be decomposed as 2T (s+ ε) where s is an integer number of
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range clock periods 2T (the range clock period is two chips), and ε ∈ [0, 1) is a fraction

of a range clock period. That is,

φ′PN(t) = φPN(t− 2T (s+ ε)). (59)

Tracking the chip timing means tracking ε, based on observing the carrier phase-

corrected signal ỹ(t) as given by (48).

When p(t) is the half-sine shape, φPN(t) is highly correlated with φRC(t), as explained

in Section II-A.2, and so for chip-tracking purposes, we may write

φ′PN(t) = φPN(t− 2T (s+ ε)) (60)

≈ φRC(t− 2T (s+ ε)) (61)

= sin(2πfRC(t− 2T (s+ ε))) (62)

= sin(2πfRC(t− 2Tε)) (63)

= sin(2πfRCt+ θRC), (64)

where (62) follows from (20), (63) follows because 2πfRC2Ts = 2πs is an even multiple

of π, and in (64) we define θRC , −4πfRCTε, which is a phase we will track. Similarly,

when p(t) is the rectangular shape, we have

φ′PN(t) ≈ φRC(t− 2T (s+ ε)) = sgn(sin(2πfRCt+ θRC)) (65)

=
4

π

∞∑

i=1,3,5

1

i
sin(2πifRCt+ iθRC), (66)

where (66) is the Fourier series expansion of the square wave.

We now describe how ỹ(t) may be pre-processed into a signal from which θRC may be

estimated using a PLL of the same type as described in the previous section. This

pre-processing is shown in Figure 8.

Low Pass Filter
From carrier tracking PLL

To chip tracking PLL
Im(·)

exp[−j2πfRCt]

ỹ(t) r̃′(t)

Figure 8. The carrier tracking loop output is down-converted.

When the carrier tracking loop is in lock, the signal component is contained almost

entirely in the imaginary component. To simplify the analysis in the remainder of this

subsection, we consider only the rectangular pulse shape. A locked carrier tracking loop

means that ∆θ(t) � 1 and thus cos(∆θ(t)) ≈ 1 and sin(∆θ(t)) ≈ ∆θ(t), so that (55)

simplifies to

Im[ỹ(t)] =
√
Prφ

′
PN(t) +

√
Pc∆θ(t) + n′s(t). (67)

This is mixed with a tone at the range clock frequency and low pass filtered. Because

the transmitted range clock is coherent with the uplink frequency [2], the spacecraft can
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use its recovered carrier frequency f̂ ′c to provide a Doppler rate-aided estimate of fRC.

This results in a PN chip tracking PLL input of

r̃′(t) , LPF [Im(ỹ(t)) · exp[−j2πfRCt]] (68)

= LPF
[(√

Prφ
′
PN(t) +

√
Pc∆θ(t) + n′s(t)

)
· (cos(2πfRCt)− j sin(2πfRCt))

]
(69)

= LPF
[√

Prφ
′
PN(t) cos(2πfRCt)− j

√
Prφ

′
PN(t) sin(2πfRCt)

]

+
√
Pc∆θ(t) cos(2πfRCt)− j

√
Pc∆θ(t) sin(2πfRCt) + ñ′(t) (70)

≈
√
Prφ

′
PN(t) cos(2πfRCt)− j

√
Prφ

′
PN(t) sin(2πfRCt) + ñ′(t) (71)

≈ 2
√
Pr
π

sin(θRC)− j 2
√
Pr
π

cos(θRC) + ñ′(t) (72)

=
2
√
Pr
π

exp[j(θRC − π/2)] + ñ′(t), (73)

where in (71) we dropped the
√
Pc terms because they are at a frequency near fRC which

will be removed by the low pass filter of the pre-processing step shown in Figure 8, where

(72) follows from (66) and again the higher frequency terms (i > 1) are removed, and

where ñ′(t) is a complex noise term with two-sided power spectral density N0/4 in each

component.

The PN chip tracking PLL tracks θRC from (73) in the same way that the carrier tracking

PLL tracks θ(t) from (39). The output of the PLL is an estimate θ̂RC; the corresponding

estimate ε̂ of the fractional chip delay is obtained from:

θ̂RC = −4πf̂RCTε. (74)

At this point, soft symbols of the chips may be computed by

vk ,
∫ kT+ε̂

(k−1)T+ε̂

Im (ỹ(t)) dt, (75)

where ỹ(t) is the original carrier-phase-adjusted input to the chip tracking loop. Thus,

the final output of the chip timing tracking loop is a set of discrete-time soft symbols

vk.

D. PN Sequence Acquisition

The sequence of match filtered chips {vk} in (75) is a noisy delayed version of the PN

sequence {dk}:

vk = dk−2s + nk (76)

= dk−u + nk, (77)

where nk is additive white Gaussian noise, s is an unknown integer offset of range clock

periods from (59), and u , 2s is an integer offset number of chip periods. The offset u is

an even integer because the chip tracking timing has resolved the fractional timing with

respect to the range clock period, which is two chips. Nevertheless, in the following, we

shall not make use of the even-ness of u.
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The component structure of the PN sequence enables acquisition of the range code

without correlating against its full million-long period. Instead, only correlators for each

of the shorter component codes are needed. A functional block diagram of a correlator

for the jth component code is shown in Figure 9. The match filtered symbols vk are

correlated with each shifted version of the jth component code. Each shifted correlation

is accumulated (summed) and the index uj of the largest accumulator is chosen:

uj = argmax
u

∑

k

vk−uC
′
j(k). (78)

The sum uses sufficiently many terms to achieve the desired probability of correct ac-

quisition. The index uj gives the offset, modulo Lj , between the overall range code

and the locally generated PN sequence. This is done for each sequence, resulting in the

indices u1, u2, u3, u4, u5, and u6.

Once component codes are acquired (i.e., u1, u2, u3, u4, u5, and u6 are determined), the

overall delay may be calculated by applying the Chinese Remainder Theorem [8], as

follows. Let

mj , L/Lj (79)

m−1
j mod Lj , {n ∈ {0, 1, . . . , Lj − 1} : nmj = 1 mod Lj} (80)

aj , mj(m
−1
j mod Lj). (81)

For each j ∈ {1, 2, 3, 4, 5, 6}, the values of Lj , mj , m
−1
j mod Lj , and aj are listed in

Table 2. By the Chinese Remainder Theorem, the estimate û of the delay u in the

length-L range code is given by

û =

6∑

j=1

ajuj mod L. (82)

The offset û indicates the number of chips (symbols) by which the received and locally

generated sequence differ, and the estimate will be correct whenever the component

code acquisitions are correct, in which case û will be even as described above. The

estimate in units of range clock periods is simply ŝ = û/2.

Match

filtered

symbols

Accumulate

Accumulate

Accumulate

Pick

Largest

0 1 Lj − 1

uj

C′
j

{vk}

Figure 9. Correlator for the jth component code. This structure is repeated for j = 1, 2, 3, 4, 5, 6.
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Table 2. Constants used in PN range code acquisition.

j Lj mj (m−1
j mod Lj) aj

1 2 504,735 1 504,735

2 7 144,210 5 721,050

3 11 91,770 7 642,390

4 15 67,298 2 134,596

5 19 53,130 16 850,080

6 23 43,890 4 175,560

As an example of this calculation, suppose the input to the receiver is a PN range code

with offset u = 123, 456 chips, and the receiver is to determine the value of u. If each

component code is properly acquired using a correlator as shown in Figure 9, then for

each j the receiver would select uj satisfying uj = u mod Lj , or u1 = 0, u2 = 4, u3 = 3,

u4 = 6, u5 = 13, and u6 = 15. Applying (82), we have

û = 504, 735× 0 + 721, 050× 4 + 642, 390× 3 + 134, 596× 6 + 850, 080× 13

+ 175560× 15 mod 1, 009, 470

= 123, 456,

which equals u as expected.

E. Range Code Phase Computation

Using the signal processing described in the preceding sections, the spacecraft has an

estimate ŝ and ε̂ for any time t of the spacecraft’s time reference. From (59), its estimate

of the timing offset between the received range code waveform φ′PN(t) and the spacecraft

reference PN waveform φPN(t) is 2T (ŝ + ε̂). The range code phase ψs(t), in radians, is

related to the time offset estimate by

ψs(t)

2π
=

2T (ŝ+ ε̂)

LT
. (83)

That is, one full cycle of the phase (2π radians) corresponds to a time offset of one full

period (L chips of duration T ) of the range code waveform. Since the right-hand side

is in [0, 1), the spacecraft is computing a wrapped phase, i.e., ψs(t) ∈ [0, 2π).

As described in in Section II of [1], it is more convenient to represent the wrapped phase

ψs(t) in units of chips, instead of radians, which results in the simpler expression

ψS(t) = 2(ŝ+ ε̂), (84)

where, again, it should be understood that this is a wrapped phase, not the unwrapped

phase needed in (2). The ground processing at the DSS is responsible for unwrapping

the phases measured at the spacecraft, by looking at the entire sequence of wrapped

phases transmitted to the ground and using prior knowledge of the spacecraft’s range.
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On board the spacecraft, the ground reference time is not known, and it may be that

no stable time reference is available at all. The spacecraft does not need to know time;

it merely needs to be able to compute and store the (wrapped) value of ψS(t) from

(84) at the time that a downlink telemetry codeword begins being transmitted. (That

time, in the ground’s reference time frame, occurs at time tS, but the spacecraft need

not know this.) Later, this value of ψS(tS) is associated as in (2) with another phase

ψT (tR), measured at the DSS at the time tR when the same telemetry codeword arrives

at the receiver. Then this process is repeated for additional sample times tS at the start

of other downlink telemetry codewords, to be associated with their respective ground

reception times tR.

IV. Signal Processing in the Downlink Receiver

The ground station receives a noisy, delayed version of (21), which can be represented

as

r(t) = s′(t) + n(t). (85)

where s′(t) is a delayed version of the transmitted signal s(t), and n(t) is a white

Gaussian noise process with two-sided spectral density N0/2. The argument t in (85)

is the local ground time reference. As we saw for the uplink signal, the time-varying

downlink delay introduces a Doppler-shift in the received carrier frequency, as well as a

delay in the time of the arriving telemetry.

The ground receiver down-converts, digitizes, and tracks the downlink signal. A func-

tional block diagram of the ground receiver is shown in Figure 10. Again, for now we

ignore the digitization and describe the signal processing using a continuous-time nota-

tion in this section. Section V will describe the discrete-time signal processing. In the

following subsections, we describe each box shown in the figure.

A. Down-Conversion to Baseband

The telemetry signal is down-converted using the same structure as in Figure 5, except

that the local oscillator has frequency f̂ ′c, accounting for the Doppler seen on the down-

link. When the pulse shape is rectangular, as is common for the downlink signaling,

this results in the complex baseband signal

r̃(t) =
√
Pce

jθ(t) + j
√
Pde

jθ(t)φ′TM(t) + ñ(t), (86)

where Pc = Pt cos2(φd), Pd = Pt sin2(φd), and φ′TM(t) is a delayed version of φTM(t).

This is the same form as we saw for the uplink, given by (39), except that here we have

a data modulation index of φd instead of the ranging modulation index φr, and we have

a downlink modulating signal φ′TM(t) arriving at PR instead of an uplink modulating

signal φPN(t) arriving at PS.
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f̂ ′c

vkỹ(t)

Figure 10. The downlink receiver on the ground.

B. Carrier Tracking with PLL or Costas Loop

If a residual carrier is present, the ground receiver may use a PLL to track the carrier

phase, exactly as described for the uplink receiver in Section III-B, resulting in the

output ỹ(t). On the other hand, when φd → π/2, we have Pc → 0, and the PLL filter

input (58) contains only noise. Therefore, a different approach is needed to track the

phase of a suppressed carrier signal.

A well-known technique for tracking the phase of a suppressed carrier signal is the Costas

loop, which employs both the imaginary and real components of the phase-corrected

downconverted signal ỹ(t) to generate the error signal. A block diagram of the Costas

loop for continuous time signals is shown in Figure 11. We assume a rectangular pulse

shape is used, as is typical of downlink transmissions. When the carrier is suppressed,

VCO

Loop
Filter

r̃(t) ỹ(t)

Re(·)

w̃(t)

−1/P̂t

zkvk1

T

∫ kT+ǫ̂

(k−1)T+ǫ̂

(·)

Im(·)

Error
signal

Figure 11. Costas loop for a continuous-time, complex input.
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we have φd = π/2, and so Pc = 0 and Pd = Pt in (86), so that when r̃(t) is multiplied

by w̃(t) = e−jθ̂(t) we have

ỹ(t) = j
√
Pte

j∆θ(t)φ′TM(t) + ñ′(t). (87)

Assuming Pt and ∆θ(t) are relatively constant over the duration of a symbol, and

further, that the symbol timing is known to a good accuracy, we may integrate over the

interval of a symbol to obtain

vk ,
1

T

∫ kT+ε̂

(k−1)T+ε̂

ỹ(t) dt (88)

= j
√
Pte

j∆θkdk + ñ′k, (89)

where ∆θ(t) = ∆θk within the kth symbol interval, and where

ñ′k ,
1

T

∫ kT+ε̂

(k−1)T+ε̂

ñ′(t) dt , n′c,k + jn′s,k (90)

is the noise integrated over a symbol interval. The real and imaginary parts of vk are

Re[ṽk] = −
√
Pt sin(∆θk)dk + n′c,k (91)

Im[ṽk] =
√
Pt cos(∆θk)dk + n′s,k, (92)

which are multiplied to form

zk , Re[ṽk] · Im[ṽk] (93)

= −Pt
2

sin(2∆θk)d2
k + n′′k (94)

≈ −Pt∆θk + n′′k , (95)

where in (94) we used 2 sin(x) cos(x) = sin(2x) and where we let the cross terms and

squared noise term be denoted by

n′′k ,
√
Pt cos(∆θk)dkn

′
c,k −

√
Pt sin(∆θk)dkn

′
s,k + n′c,kn

′
s,k. (96)

In (95) we used d2
k = 1 and assumed ∆θk � 1, so that sin(2∆θk) ≈ 2∆θk. The −Pt

is a scale factor that can be removed, and as a result, the signal into the loop filter is

proportional to the phase error, plus higher frequency terms that are attenuated by the

loop filter, and noise.

The final output of the Costas loop is the mixer output ỹ(t) in (87), which is the received

complex baseband signal with the varying carrier phase θ(t) removed.

C. Symbol Timing Synchronization with DTTL

The next stage in the ground receiver is to recover the symbol timing. The received

downlink waveform includes an unknown symbol timing offset εT , where ε ∈ [0, 1) is a
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fraction of a symbol duration T . Tracking the symbol timing means tracking ε, based

on observing the carrier phase-corrected signal given by

ỹ(t) =





√
Pce

j∆θ(t) + j
√
Pde

j∆θ(t)φ′TM(t) + ñ′(t), Carrier tracking with PLL

j
√
Pde

j∆θ(t)φ′TM(t) + ñ′(t), Carrier tracking with Costas loop.

(97)

As noted in Section III-C for the uplink signal, after carrier tracking most of the signal

is in the imaginary part of ỹ(t), and analogous to (67), we have

Im[ỹ(t)] =
√
Pdφ

′
TM(t) +

√
Pc∆θ(t) + n′s(t). (98)

If we further assume Pc = 0 or ∆θ(t) ≈ 0, this simplifies to

Im[ỹ(t)] =
√
Pdφ

′
TM(t) + n′s(t). (99)

The symbols are tracked with a data-transition tracking loop (DTTL). A block diagram

of the DTTL is shown in Figure 12. At the input is Im[ỹ(t)], as given in (99). The

upper arm forms the sequence {vk} given by

vk ,
∫ kT+ε̂

(k−1)T+ε̂

Im[ỹ(t)] dt. (100)

This is an in-phase integration resulting in the soft symbol estimate vk. Hard decisions

are formed by d̂k , sgn(vk), followed by a transition detection

Dk ,
d̂k−1 − d̂k

2
. (101)

In this way, Dk is 1 for a positive-to-negative transition, 0 for no transition, and -1 for

a negative-to-positive transition.

Hard
decision D

Transition detector

In-phase integrator

Mid-phase integrator

Timing
Reference

Loop
Filter

Im[ỹ(t)] signal
Error

d̂k

d̂k−1

vk

zk

∫ kT+ǫ̂

(k−1)T+ǫ̂

(·)dt

C

∫ (k+W/2)T+ǫ̂

(k−W/2)T+ǫ̂

(·)dt

(k − 1)T + ǫ̂, kT + ǫ̂, . . .

(k −W/2)T + ǫ̂, (k +W/2)T + ǫ̂, . . .

1/2

Dk

Figure 12. The DTTL.
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The lower arm forms the sequence {zk} given by

zk , C

∫ (k+W/2)T+ε̂

(k−W/2)T+ε̂

Im[ỹ(t)] dt. (102)

where W = 2−n is a window fraction with n ∈ {0, 1, 2, 3, 4}, and where C = 1/(2
√
Pd)

is a normalization factor. This is a mid-phase integration resulting in an estimate of a

timing offset.

The sign-corrected error signal is formed by the product of the upper and lower arms,

Dkzk, which is the input to the loop filter that averages the instantaneous error signal

to estimate the delay and produces a filtered input to the timing reference, whose timing

signal is adjusted to shift the in-phase and mid-phase interval boundaries, reducing the

relative delay between the timing reference clock and the received symbols.

The operation of the DTTL can be explained with the help of Figure 13(a), which shows

a section of the symbol-sequence consisting of rectangular pulses of known duration T ,

where for discussion purposes the additive noise is assumed to be negligible. This figure

illustrates a case where the timing reference outputs are synchronized with the received

signal.

In Figure 13(a), the symbol decisions d̂k−1, d̂k, d̂k+1, . . . are made with in-phase, full-

symbol-duration integrations over the intervals indicated by blue dashed lines. The

accompanying table shows the symbol decisions for the example considered. Likewise,

the lower arms computes zk−1, zk, zk+1, . . .. In this example the window fraction is

W = 1/2, which means the mid-phase integration occurs over a duration of T/2. In this

example the zk = 0 zero whenever there is a transition because the loop is synchronized.

Thus, the error signal Dkzk = 0 for all k.

Figure 13(b) illustrates what happens when the loop’s time reference is slow by δ.

Provided δ is small, the symbol decisions remain correct, as indicated in the table.

Because of the timing offset, the mid-phase integral in the lower arm will be ±δ/2 when

a digital transition is present, depending on the direction of the transition. Thus, the

error signal Dkzk is δ whenever a digital transition is present, and zero otherwise, as

indicated in the table. We note that in the noise-free case we have described the error

signal does not depend on W . When noise is present, the variance of zk is proportional

to W , and thus, it is advantageous to use a lower value of W provided the mid-phase

integral still captures the region of the digital transition.

The final output of the DTTL is the soft symbol vk at the output of the in-phase

integrator in the upper arm.

D. Determining the Parameters Used in the Time Delay Computation

The output of the DTTL is a sequence of soft symbols {vk}. The first symbol of

a codeword must be identified in order for proper decoding to take place. This is
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(b) When operating with a timing offset of δ.

Figure 13. The in-phase and mid-phase integration intervals used by the DTTL.
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accomplished by performing a running correlation, or related statistic, with a known

synchronization marker that is inserted between each codeword [9].

When the frame synchronization marker is found, the receiver records a computed time-

tag tR associated with when the first symbol of the codeword arrived at PR. This can

be done extremely accurately by using the frame synchronizer’s determination of the

integer symbol offset and the DTTL’s estimate of the fractional delay ε, in relation to

the 1-pps or other accurate timing reference. For example, in open loop recorded data,

an accurate time-stamp may occur once per second, and any sample (or even a time

between samples) may be associated with a time which is a linear interpolation of 1-pps

epochs occurring before and after the sample. This type of interpolation is generally

accurate to less than a nanosecond.

Identifying the frame synchronization marker also enables the decoder to operate on

the codeword immediately following it. Once decoded, any stored spacecraft range code

phase measurement ψS(tS) within the data is extracted.

This results in the final outputs of the downlink receiver, tR and ψS(tS), shown in Fig-

ure 10. The transmitted phase ψT (tR) and phase derivative
{
ψ̇T (t), t ∈ [tT , tR]

}
are

retrieved from DSS records. At this point we will have collected all the measurements

needed to complete the time delay computation in (2). The final step of converting/-

calibrating this time delay (tR − tT ) to the two-way geometric range is described in the

previous article [1].

V. Digital Processing Implemented in Ranging Software

As mentioned at the beginnings of Sections III and IV, the continuous-time signal pro-

cessing block diagrams, depicted in Figures 4 and 10 for the uplink and downlink,

respectively, are simplifications in that they omit the analog-to-digital (A-to-D) con-

versions that take place in each processing chain. After downconversion, the complex

analog waveforms are sampled via short-term integration at a rate commensurate with

the Nyquist criterion and specific design constraints:

r̃i ,
1

TS

∫ iTS

(i−1)TS

r̃(t) dt. (103)

The actual tracking loops past that point are therefore digital versions of the tracking

loops described in Sections III and IV. Figures 14 and 15 are block diagrams for the

digitized versions of the uplink and downlink receivers.

We implemented MATLAB-based software to simulate the operation and performance

of a telemetry ranging system using digitized tracking loops. The remainder of this

section gives equations and pseudo-code specifying the operation of the major software

functions depicted in Figures 14 and 15 past the point of A-to-D conversion. Then,

in Section VI we describe two useful software tools built from these functional blocks.

Finally, in Section VII we provide performance analyses, comparing software-simulated
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performance of the discrete-time tracking loops with Cramér-Rao bounds derived from

the corresponding continuous-time models.

A. Residual Carrier Tracking Using a DPLL

Figure 16 illustrates a digital phase-locked loop (DPLL) for tracking the phase of a

residual carrier from a discrete-time, complex baseband signal. The software’s DPLL

function is used by both the uplink and downlink receivers unless the downlink telemetry

signal is suppressed-carrier.

The digital loop structure is obtained from the analog model by discretizing the analog

signals, which are then processed digitally by the DPLL. Using the sample times ti ,

iTS, the discrete-time input to the loop is given by:

r̃i =
√
Pt exp[j(φrφPN(ti) + θi)] + ñi, (104)

where θi , θ(ti).

The discrete representation of the carrier tracking loop model is shown in Figure 16. As

in the analog PLL, the input signal to the DPLL is first counter-rotated with the current

estimate of the carrier phase, in this case sample by sample, by w̃k. The w̃k term is

updated by the numerically-controlled oscillator (NCO) at the loop update rate, Rupdate,

which is slower than the sample rate Rsamp = 1/TS by a factor K , Rsamp/Rupdate.

The counter-rotated complex signal is then accumulated and averaged over K samples,

i.e., an interval of length Tu , KTS. Assuming a rectangular pulse shape, the imaginary

component of this summation is

zk =
√
Pc∆θk + n′′s,k, (105)

which is the discrete-time version of (58). Normalizing this by 1/
√
P̂c allows one to

extract the residual phase (or phase error) for the current update interval k

∆θk =
1√
P̂c
· zk. (106)

NCO

Loop
Filter

r̃i

Phase model
update

1/
√
P̂c

zk1

K

kK∑

i=(k−1)K+1

Im(·)
ỹi

w̃k

Error
signal

∆θk

θ̂k ∆θk+1

Figure 16. DPLL.
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In our simulation, the model phase for the (k + 1)th interval is estimated from the

current phase estimate θ̂k and residual phase ∆θk using a conventional second order

digital loop filter, as described in [10].

θ̂k+1 = θ̂k +K1∆θk +K2

k∑

n=1

∆θn (107)

The coefficients of the filter are calculated based on the loop filter bandwidth BL and

update interval length Tu (see [10]: K1 = 8
3BLTu, K2 = 1

2K
2
1 . These gain coefficients

correspond to the continuous update, standard underdamped model in [10], which is

accurate when BLTu < 0.02. Hence we shall use the continuous time model to analyze

the phase locked loops in Section VII.

The operation of the DPLL in Figure 16 is described by the following pseudo-code. Note

that the loop filter operates at a lower rate than the sampling rate, and therefore we

use different indices (i and k, respectively) for the input signal and NCO output.

Algorithm 2 Digital Phase-locked loop (DPLL).

1: while input present do

2: ỹi ← r̃i · w̃k {Mix input signal with NCO output}
3: zk ← 1

K

∑kK
i=(k−1)K+1Im(ỹi) {Take imaginary part and average over K samples}

4: ∆θk ← 1√
P̂c
· zk {Normalize to extract residual phase}

5: θ̂k+1 ← θ̂k +K1∆θk +K2

∑k
n=1 ∆θn {Estimate phase for next interval using loop

filter}
6: w̃k+1 ← exp[−jθ̂k+1] {Apply model phase estimate to NCO for next interval}
7: end while

B. Suppressed Carrier Tracking with Costas Loop

The downlink signal modulation format can be configured by setting the modulation

index from the GUI. The options allow either a fully suppressed carrier, i.e., φd =

π/2 radians, or a residual carrier, i.e., φd < π/2 radians. A DPLL (as described in

the previous subsection) is used when a residual carrier is present, and the software

automatically selects a Costas loop for a fully suppressed carrier.

Figure 17 shows the block diagram of the digital implementation of the Costas loop.

What was an integral of ỹ(t) in the continuous-time in Figure 11 has become an

equivalent discrete-time summation. Here, Ns is the number of samples per sym-

bol, nε , bε · Nsc is the integer part of the sample-index of the timing offset ε, and

δε , ε ·Ns−nε is the fractional sample of the timing offset. The weighted sum indicated

in the figure enables the inclusion of only a fraction of the first and last sample of a

symbol in the summation. After multiplying the real and imaginary parts, the average

detected phase signal is then normalized to obtain the residual phase ∆θk = −zk/P̂t.
Note that the normalization factor is P̂t, and not

√
P̂t, because phase error is obtained
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by multiplying the I and Q components of the signal. The model phase for the next

update interval is estimated using a second order loop filter based on (107).

NCO
Phase model

update
Loop
Filter

r̃i

Re(·)

Im(·)

vk

−1/P̂t

w̃n

ỹi zk

∆θn
Error signal

∆θn+1θ̂n

kNs+nǫ∑

i=(k−1)Ns+nǫ+1

(1− δǫ)ỹi + δǫỹi+1

1

K

nK∑

(n−1)K+1

(·)

Figure 17. The discrete-time Costas loop, as implemented in the simulation.

The operation of the Costas loop in Figure 17 is described by the following pseudo-code.

This pseudo-code does not include the optional additional summation prior to the loop

Algorithm 3 Costas loop

1: while input present do

2: ỹi ← r̃i · w̃k {Mix input signal with NCO output}
3: vk =

∑kNs+nε
i=(k−1)Ns+nε+1(1− δε) · Im(ỹi) + δε · Im(ỹi+1)

4: zk = Re(ṽk) · Im(ṽk) {Average phase error for current interval}
5: ∆θk ← − 1

P̂t
· zk {Normalize to extract residual phase}

6: θ̂k+1 ← θ̂k +K1∆θk +K2

∑k
n=1 ∆θn {Next phase estimate, using loop filter}

7: w̃k+1 ← exp(−jθ̂k+1) {Apply model phase estimate to NCO for next interval}
8: end while

filter. Such a summation, when used, enables the loop update rate to be slower than

the symbol rate, if desired.

C. DTTL for Uplink Chip Timing Recovery or Downlink Symbol Timing Recovery

The fractional component of the ranging signal phase, ε, can be recovered using either

a traditional DTTL or a DPLL loop. The user may select which loop type to use by

toggling the loop type button in the spacecraft receiver control panel of the GUI. When

DPLL is selected, the uplink signal is first pre-multiplied by a sinusoidal waveform of

half the chip rate. The phase of the composite signal is proportional to the timing offset

of the ranging signal and can be recovered using the standard DPLL loop described

in Section V-A. We report the performance of chip tracking using DPLL in Section

VII-E.1.

The DTTL can be used to recover the fractional timing for both uplink PN ranging

signal and downlink telemetry signal. Figure 18 shows the block diagram of the digital
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implementation of a DTTL. As a digital implementation of Figure 12, our software uses

weighted sums to compute the in-phase and mid-phase integrations. Another difference

worth noting is that the timing estimate is updated at a rate that is potentially lower

than the symbol(chip) rate.

Hard
decision D

Transition detector

In-phase integrator

Mid-phase integrator

Timing
Reference

Loop
Filter

Im[ỹi] signal
Errorǫ̂n+1 ∆ǫn

d̂k

d̂k−1

vk

zk

1/2

Dk

nǫ = ⌊ǫ̂n ·Ns⌋, δǫ = ǫ̂n ·Ns − nǫ

C ′
kNs+(nw/2)+nǫ∑

i=kNs−(nw/2)+nǫ+1

(1− δǫ)Im(ỹi) + δǫIm(ỹi+1)

kNs+nǫ∑

i=(k−1)Ns+nǫ+1

(1− δǫ)Im(ỹi) + δǫIm(ỹi+1)

1

K

nK∑

(n−1)K+1

(·)

Figure 18. The DTTL, as implemented in our telemetry ranging software.

For a residual carrier, we extract the quadrature component of the demodulated signal

as the input to the loop. When the carrier is fully suppressed, the in-phase component

contains the data modulation and is therefore used as the input to the DTTL. Using the

timing offset estimate ε̂ as reference, the in-phase and mid-phase integrators calculate

the weighted sum of ỹ(i− nε) and ỹ(i− nε + 1) to obtain soft symbol estimate vk and

timing error estimate zk. As before, we let let nε (samples) = bε · Nsc be the integer

component, and δε = ε ·Ns − nε be the fractional component of the timing offset. The

in-phase (soft symbol) and mid-phase integrations are, respectively,

vk =

kNs+nε∑

i=(k−1)Ns+nε+1

(1− δε) · Im(ỹi) + δε · Im(ỹi+1) (108)

zk = C ′
kNs+

nw
2 +nε∑

i=kNs−nw2 +nε+1

(1− δε) · Im(ỹi) + δε · Im(ỹi+1). (109)

Here Ns is the number of samples per symbol (chip), and nw = W ·Ns is the number of

samples in the mid-phase integration window. Note that we use C ′ for the normalization

factor in mid-phase integrator to differentiate from the continuous-time model, i.e.,

C ′ = 1/(2nw
√
Pd).

Data transition Dk is detected from the estimated soft symbols vk using (101). The

timing error ε̂n is extracted by averaging the products of Dk and zk over an update

interval of K symbols(chips)

∆εn =
1

K

nK∑

k=(n−1)K+1

Dk · zk. (110)
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New timing reference ε̂n+1 for symbols in the (n + 1)th interval is estimated using the

standard second order loop filter. Below shows the pseudo-code of our implementation

of the DTTL loop.

Algorithm 4 DTTL

1: ε̂k ← ε {Initialize timing estimate using saved state}
2: while input present do

3: nε = bε̂n ·Nsc, δε = ε̂n ·Ns − nε {Calculate parameters for the integrators}
4: vk ←

∑kNs+nε
i=(k−1)Ns+nε+1((1− δε) · Im(ỹi) + δε · Im(ỹi+1)) {In-phase integrator}

5: zk ← C ′
∑kNs+

nw
2 +nε

i=kNs−nw2 +nε+1
((1−δε)·Im(ỹi)+δε ·Im(ỹi+1)) {Mid-phase integrator}

6: Dk ← 1
2 (sgn(vk−1)− sgn(vk)) {Data transition detection}

7: ∆ε̂n ← 1
K

∑nK
k=(n−1)K+1Dk · zk {Average timing error estimate}

8: ε̂n+1 ← ε̂n +K1∆εn +K2

∑n
m=1∆εm {Update timing reference estimate}

9: end while

The default value of W is 2−1 in the software, leading to a half symbol duration for

the mid-phase integrator. Ideally W shall be large (e.g., W = 1) in the beginning of

processing and gradually reduced as the timing is acquired.

D. Uplink PN Sequence Acquisition

Using the sequence of estimated soft symbols vk, we can acquire the integer offset of

the range clock as described in Section III-D. The functional block we implemented in

the software is the same because it was already a discretized algorithm.

VI. Software Tools for Telemetry Ranging Support

In this section, we describe two useful software tools built from these functional blocks.

One tool allows the user to simulate the end-to-end operation of a telemetry ranging

system, allowing user inputs of system parameters to create various scenarios of interest.

The second tool allows the software to directly process data recorded from the spacecraft

and ground receivers of a telemetry ranging system in an actual or test configuration.

A. End-to-End System Simulation Tool

Fig. 19 shows a snapshot of the graphical user interface (GUI) we developed to facili-

tate end-to-end simulation and performance analysis. There are four control panels in

the user interface that allow the user to configure the signaling format, channel condi-

tion, and receiver characteristics of the telemetry ranging system. We use the complex

baseband signal model as described in Section III-A.
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Figure 19. Graphical User Interface of the telemetry ranging software for end-to-end system

simulations.

The ground transmitter module produces, in a revolving way, a noisy and delayed

version of the uplink ranging signal r(t). The PN code sequence dk is chosen as one

of the weighted-voting balanced Tausworthe codes (i.e., T2B or T4B). The drop-down

menu for pulse shaping allows the user to select either a rectangular pulse shape or

half-sine pulse shape based on the chip rate. In the simulations, the user specifies the

number Ns of samples per chip, or digital symbol, and the sampling rate is set to Ns

times the chip rate, where Ns ≥ 2. The timing offset allows the user to set the simulated

uplink delay τu(t) from the DSS to the spacecraft receiver. Even though this delay is

set to be a constant in the user interface for simulation, our tracking loops are capable

of tracking time-varying delays. The simulation sets the uplink instrumentation delays

τDSS
u , τ SC

u to zero.

The spacecraft receiver module provides options for the user to select appropriate loop
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filter configurations for carrier tracking and chip tracking. The loop filter type can be

chosen as either being “standard underdamped” or “supercritically damped”. By default

we always use 2nd-order loop filters. However the user can choose to use anything from

1st-order to 4th-order loops. The loop gain coefficients {Ki, i = 1, 2, 3, 4} are completely

characterized by the loop bandwidth BL and update rate 1/Tu [11]. For chip timing

tracking, the user can use either DTTL or DPLL by toggling the loop type button in

the chip tracking control panel. The range code phase ψS(tS) = 2(ŝ+ ε̂) is determined

from the acquired PN code phase s and chip timing offset ε as in (84).

The spacecraft transmitter module simulates generation of the downlink telemetry sig-

nal s(t), as in Figure 3. The telemetry data is currently being generated as random

sequences of +1s and −1s in the simulation software, without including the uplink

range code phase measurements. For error correcting codes, the user is allowed to select

from a group of rate-1/6 turbo codes and AR4JA codes with different lengths. The

maximum iterations and threshold are used by the iterative decoder as the criteria to

decide when to stop decoding. The Attached Sync Marker (ASM) bit pattern is chosen

for the selected channel code according to the CCSDS recommended standard [9].

The ground receiver uses a DPLL to track the carrier phase of the downlink signal when

a residual carrier is present, i.e., φd < π/2, and uses Costas loop when the carrier is

suppressed, i.e., φd = π/2. DTTL is used for symbol synchronization of the random

data modulation. The configuration parameters for the loop filters are the same as in

the uplink tracking loops, although they may use different values.

To simulate telemetry ranging in a continuous, memory-efficient way, we generate the

uplink and downlink signals in blocks and “stitch” them together in the signal processing

of the receiver. The receiver module performs this stitching by saving the state of the

tracking loops at the end of processing of each block, and using the saved state as the

initial state for processing of the next block. Anytime during the simulation, the user

may examine the status of the signal acquisition by reviewing statistics of the NCO

outputs of the tracking loops. The transient as well as current states of the tracking

loops are plotted, and an updated standard deviation of the tracking error is reported.

Fig. 20 shows an example of realtime reporting of the downlink signal acquisition status.

The user can also choose to use the “UL CRLB” and “DL CRLB” buttons in the tool

panel to evaluate system performance analysis under different channel conditions and

compare with Cramér-Rao bounds. The “Independent Analysis” button in the receiver

panels allows the user to evaluate the performances in both a cascaded or stand-alone

mode. The performance analysis is a useful tool for validating the software, as well as

creating a capability to quickly test telemetry ranging estimation accuracy in various

scenarios of interest. We report simulation results and error analysis in Section VII.
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Figure 20. An example of realtime reporting of downlink signal acquisition status.

B. Test Data Processing Tool

In addition to the first tool enabling the user to run end-to-end system simulations, a

second software tool allows direct processing of test data recorded from a telemetry rang-

ing system. The GUI for this tool is shown in Figure 21. This tool provides the ground

signal processing for receiving a telemetry-ranging signal recorded by a Radio Science

Receiver (RSR), Very-Long Baseline Interferometry (VLBI) Science Receiver (VSR), or

a Wideband VSR (WVSR). This tool was developed for testing at the Demonstration

Test Facility 21 (DTF-21) in Monrovia, California. The GUI allows the user to select

the open loop recorder type used and the name of the file containing the recording. All

of the signal processing steps described in Section IV are carried out, culminating in a

sequence of ψS(tS) phase measurements suitable for use in computing range.

VII. Performance Analysis and Numerical Results

This section starts with a brief derivation of Cramér-Rao bounds on the estimation per-

formance of the individual major receiver functions on the spacecraft and the ground.
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Figure 21. Graphical User Interface of the telemetry ranging software for processing test data.
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These bounds are developed from continuous-time models of the corresponding process-

ing stages, as in Section III and Section IV. Then we evaluate the simulated performance

of the individual major receiver functions on the spacecraft and the ground in a stan-

dalone mode, isolated from errors in adjoining functional blocks, and compare these

simulation results to the bounds. Then we evaluate the ranging estimation performance

of the end-to-end telemetry ranging system and its component functional blocks in

relevant scenarios.

A. Cramér-Rao Bound on the Variance of Estimation Error

The Cramér-Rao Bound (CRB) is a lower bound on the variance of any unbiased estima-

tor, hence it provides a useful metric for evaluating the performance of the phase-locked

loops and symbol synchronization systems used to estimate signal phase and symbol

delay in this article.

When applied to telemetry ranging, the signal amplitude and noise variance may be

assumed known, since these quantities remain essentially constant for a long time (up

to hours), and even then change only slightly due to Earth rotation. Therefore, a

long time is available to estimate these quantities accurately; we assume that these

parameters are known for this application. However, the phase of the received carrier

and the symbol or chip delay may drift on the time scale of seconds or minutes, due to

residual Doppler caused by unmodeled relative velocity between the ground transmitter

and the spacecraft. Therefore, these quantities must be estimated in real time to enable

their measurement on the uplink and downlink signal as required for telemetry ranging.

The derivation of the CRB requires knowledge of the probability density of additive

noise encountered during reception. It is therefore convenient to consider an N -vector

of samples of the received signal plus noise for deriving the CRB, for which a joint

probability density function can be constructed. It is assumed that the received radio-

frequency signal has been downconverted to complex baseband and sampled in the

presence of additive Gaussian noise, as described in (34) and (103). The received signal

plus noise samples are modeled as r̃i = s̃i + ñi. The samples of the complex envelope

of the downconverted signal are s̃i =
√
P exp(jθ), where

√
P is the amplitude and θ

is the unknown phase. The complex noise samples ñi are zero-mean, Gaussian, and

independent. Moreover, the real and imaginary components of each noise sample are

independent and identically distributed.

For a vector of N independent complex noise samples, ñ = (ñ0, ñ1, · · · , ñN−1), the N -

dimensional joint probability density p(·) is the product of the individual probability

densities, given by

p(ñ) =
(
2πσ2

n

)−N N−1∏

i=0

exp

(
−|ñi|

2

2σ2
n

)
, (111)

where σ2
n = N0/(2Ts) is the variance of each noise component. Since r̃i = s̃i + ñi, it

follows that ñi = r̃i − s̃i and we can equivalently write the natural logarithm of (111)
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as

Λ(r̃|θ) = ln p(r̃|θ) = −N ln(2πσ2
n) +

√
P

σ2
n

Re

{
e−jθ

N−1∑

i=0

r̃i

}
− NP

2σ2
n

− 1

2σ2
n

N−1∑

i=0

|r̃i|2 ,

(112)

where Λ(r̃) is the log-likelihood function: it contains all of the information in the joint

probability density, but in a more manageable form since the logarithm of a product of

sample densities is transformed into the sum of their natural logarithm.

According to the CRB, the variance of any unbiased estimator must be at least as great

as the inverse of the Fisher information, defined as I(θ) = −E
{
∂2Λ(r̃|θ)/∂θ2

}
, where

E{·} is the expectation operator. Carrying out the indicated operations yields

I(θ) = −E
{
∂2Λ(r̃|θ)
∂θ2

}
= −E

{
−
√
P

σ2
n

Re

{
exp(−jθ)

N−1∑

i=0

r̃i

}}
=
NP

σ2
n

, (113)

from which the CRB follows as

σ2
∆θ ≥ [I(θ)]

−1
=

σ2
n

NP
, (114)

where σ2
∆θ is the variance of the phase error θ − θ̂, P is the average power of the

signal that contributes to the phase synchronization process, and N is the number of

independent complex samples that are processed.

For our purposes, it is more convenient to express the CRB in terms of the closed-

loop bandwidth BL and the signal-to-noise spectral density ratio P/N0. Recall that

a phase-locked loop with closed-loop bandwidth BL can be viewed as a short-term

integrator with effective integration time TL = 1/(2BL), hence the effective number of

Ts-second samples (Ts � TL) in a TL-second time interval is N = TL/Ts = 1/(2BLTs).

Approximating N as the number of Ts-second samples per loop integration time TL,

N = TL/Ts = (2BLTs)
−1, we can now express the CRB in the following simple and

convenient form:

σ2
∆θ ≥

N0

2TsNP
=
N0(2BLTs)

2TsP
=

BL

P/N0
. (115)

Note that the signal power P refers to the signal power relevant to the problem, and

hence may be replaced by Pt, Pr, Pc or Pd in a particular application.

The CRB (115) can be put into another form:

σ2
∆θ ≥

1

ρ
, (116)

where ρ is the signal-to-noise ratio in the loop. For a simple loop, ρ = P/(N0BL). The

form of (116) is more generally useful because it suggests lower bounds on performance

for loops where the CRB is not strictly applicable. If the noise is not Gaussian and

statistically independent from one sample to the next, then (111) and the remainder of

the CRB derivation do not strictly hold. These approximations based on (116) often

serve as tight lower bounds on performance for more general loops, as demonstrated by

simulations.
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A key observation is that as long as the phase error sensor is linear with slope equal to

one when the phase error is near zero, the same CRB holds, except for some loss factors

if not all of the signal power is utilized (as in PN DPLL), and except for some second-

order effects that appear at very high SNR. In this way, we can treat the various phase

and delay estimation loops within the same framework, and compare their performance

on a common basis.

B. Performance of Residual Carrier Tracking with PLL or DPLL

At moderate to high loop signal-to-noise ratios, the closed-loop behavior of a phase-

locked loop is well approximated by the linear loop model, characterized in discrete

time by the closed-loop transfer function Hd(jω), where ω is the phase advance (in

radians) per loop update. This transfer function has a closed-loop bandwidth BL. The

performance of the loop depends on the extent to which noise and interference are

tracked by the loop.

1. Transfer Function of Second-Order Loop

The transfer function of a second-order, discrete-time loop, expressed in terms of the

gain coefficients K1 and K2 is [10]

Hd(jω) =
D(z)− (z − 1)2

D(z)

∣∣∣∣
z=ejω

, (117)

where ω is the phase advance (in radians) per loop update, and

D(z) = (z − 1)2 + (z − 1)K1 + zK2 = z2 + z(K1 +K2 − 2) + (1−K1). (118)

For a standard-underdamped loop, K1 = (8/3)B̂LTu and K2 = K2
1/2 where B̂L is the

desired loop bandwidth and Tu is the loop update period. Combining (117) and (118)

yields

Hd(jω) =
ejω(K1 +K2)−K1

ej2ω + (K1 +K2 − 2)ejω + (1−K1)
. (119)

The noise-equivalent bandwidth BL of the loop is

BL =
1

2πTu

∫ π

0

|Hd(jω)|2 dω. (120)

As long as the loop update rate is large enough, 1/Tu > 20 B̂L, the desired loop band-

width is approximately achieved: BL ≈ B̂L.

The frequency response of the above loop may also be characterized as the transfer

function of a continuous-time, equivalent system:

H(j2πf) = Hd(j2πfTu). (121)

In Figure 22, the |H(j2πf)|2 defined by (119) and (121) is plotted, for the case B̂L =

100 Hz, as a function of frequency f .
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Figure 22. Squared magnitude of transfer function response of second-order, standard-underdamped

DPLL with BL = 100 Hz

The noise power Pn tracked by the loop is given by

Pn = N0BL. (122)

When a signal (range code or a data stream) modulates the carrier and a residual-

carrier loop is used by the receiver, some of the low-frequency content of the modulation

sidebands will lie inside the loop bandwidth, and this modulation can degrade the

carrier-tracking performance. In order to account for this effect, we must first calculate

the power PQ on the Q channel in the receiver that enters the loop.

When the modulating signal consists of random data with rectangular pulses, such as

BPSK, there is a simple formula for PQ [12]:

PQ = 2PdTdBL, (123)

where Td is the period of the data symbol.

When the modulating signal is a range code, a numerical approach is required to cal-

culate PQ. This procedure is described here for the case of rectangular pulse shapes. In

this case, the interfering modulation is j
√
Pre

jθ(t)φ′PN(t), as can be seen in (39). This

term is in the Q channel of the receiver and so will interfere with the detection of the

phase error signal in a residual-carrier tracking loop. We need to calculate the power

spectrum of this term. Equivalently, we calculate the power spectrum of
√
Prφ

′
PN(t).

The range code φ′PN(t) is (approximately) periodic and so its frequency content can be
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found from a Fourier series expansion:

φ′PN(t) =

∞∑

k=−∞
Ake

−j2πkt/(LT ), (124)

where L = 1009470 (the number of chips in one period), T is the chip period, and the

Fourier-series coefficients Ak are

Ak =
1

LT

∫ LT

0

φ′PN(t) e−j2πkt/(LT ) dt. (125)

The range code received at the transponder is not exactly periodic since the uplink

delay will generally be time varying; however, the approximation of φ′PN(t) as periodic

is acceptable for the calculation of PQ. In the case where the range code consists of

rectangular pulses, The coefficients Ak can be written in terms of the L-point discrete

Fourier transform DL(k) of the chip sequence di = ±1, 0 ≤ i ≤ L− 1:

Ak = e−jπk/L · sin(πk/L)

πk
·DL(k). (126)

The powers PPN(k) in the discrete spectral lines of
√
Prφ

′
PN(t) are calculated as

PPN(k) = Pr |Ak|2 . (127)

The frequency index k is a signed integer, so (127) represents a two-sided characteriza-

tion of the power spectrum. The frequency corresponding to the frequency index k is

k/(LT ). Conservation of energy is expressed by:

∞∑

k=−∞
PPN(k) = Pr. (128)

Figure 23 shows the power spectrum of
√
Prφ

′
PN(t) as a function of the frequency offset

from the residual carrier. This figure shows the case of the T4B range code with a 1.0-

MHz chip rate and a ranging modulation index φr = 0.1π. The vertical axis indicates

the power of individual discrete spectral lines relative to Pt (the total power of the

modulated carrier) in decibels. The largest spectral lines occur at the odd harmonics of

the range clock. In the case of Figure 23, the range clock, which is one-half of the chip

rate, equals 0.5 MHz. The residual-carrier power is indicated on this figure with a red

marker. (Pc nearly equals Pt for the small modulation index of 0.1π.)

The spectrum of Figure 23 is filtered by the transfer function of the loop. It may

be noted that this spectrum has a spectral notch near zero frequency offset, which

results in less interference power from a T4B range code than from random BPSK. The

filtered spectrum |PPN(k)|2 |Hd (j2πk/(LT ))|2 is shown in Figure 24. This figure shows

the case of the T4B range code with a 1.0-MHz chip rate and a ranging modulation

index φr = 0.1π. The effect of the 100-Hz loop bandwidth is evident. The spectrum is

symmetric, since the modulation is real. The deep notch in the spectrum for frequencies

less than 100 Hz is not visible in Figure 23 due to the horizontal scaling in that figure.
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Figure 23. Spectrum of T4B range code modulation sidebands: 1 Mchips/s and φr = 0.1π. Also, the

residual-carrier power is shown with a red marker. (Pc is different from Pt by −0.4 dB in this case and

so, because of the scale, appears to be 0 dBc.)
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Figure 24. Filtered T4B PN code modulation spectrum: 1 Mchips/s and φr = 0.1π.
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The power PQ is calculated as

PQ =

∞∑

k=−∞
|PPN(k)|2 |Hd (j2πk/(LT ))|2 . (129)

2. Simulated Tracking Loop Performance

The performance of a residual-carrier tracking loop as determined through simulation is

shown in Figure 25 as a function of Pc/N0, for modulation indices of φr = 0.4π, 0.1π/10,

and 0.01π, measured in terms of phase error standard deviation σ∆θ. The simulation

results are represented by markers.
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Figure 25. Phase error performance of DPLL carrier tracking loop as a function of Pc/N0 (dB-Hz).

Performance for both PN code and random data modulated signal are shown and compared with

respective theoretical bounds. In the simulation, we used a 2nd-order DPLL with bandwidth

BL = 100 Hz. The chip rate and symbol rate is 106 bps, the loop filter update rate was set to 105 Hz.

We use (116) as an analytical model for the performance of the loop. In this model, the

loop SNR ρ is

ρ =
Pc

Pn + PQ
, (130)

where Pn is given in (122) and PQ is given in (123) or (129), depending the modulating

signal is random or the T4B range code. Thus,

σ2
∆θ ≥

Pn + PQ
Pc

. (131)
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This model is an approximation based on the CRB. Because the modulating signal does

not have a Gaussian distribution, the CRB is not strictly applicable when PQ 6= 0. The

analytical models are shown in Figure 25 as curves.

The performance floor that is seen on the right-hand side of each curve in Figure 25 is

due to the dominance of PQ over Pn for large values of Pc/N0. The floor is higher when

the modulation index is larger.

Figure 25 shows that the analytical model agrees well with the simulation results. The

analytical model even closely predicts the performance floor. The agreement is good

over a wide range of values for φr and Pc/N0.

C. Performance of Suppressed Carrier Tracking with a Costas Loop

From (95) and Figure 11, and noting that Pd = Pt for a suppressed carrier signal, it

can be seen that the input to the Costas loop filter is

− zk
Pd
≈ ∆θk −

n′′k
Pd
. (132)

This can be compared to the input to the PLL loop filter, given by (58),

z(t)

Pc
≈ ∆θk −

n′′s (t)

Pc
. (133)

Since signal models for the PLL and Costas loops have the same form, the performance

analysis for the PLL can also be used for the Costas loop. The difference is that the

noise n′′s (t) entering the PLL loop filter is Gaussian, whereas the noise n′′k entering the

Costas loop filter noise is given by (96), which we repeat here for convenience:

n′′k ,
√
Pt cos(∆θk)dkn

′
c,k −

√
Pt sin(∆θk)dkn

′
s,k + n′c,kn

′
s,k. (134)

This includes two signal-noise cross terms and a Gaussian-times-Gaussian term. To

describe the performance, we consider the low SNR and high SNR cases separately.

In the high SNR case, the Gaussian product term n′c,kn
′
s,k in (134) may be ignored

because it is dominated by the signal-noise cross terms. What remains is not Gaussian,

but because a large number of such samples contribute to the filtered error signal, by the

central limit theorem it may be considered approximately Gaussian. Thus, performance

will be determined by the variance

var

[
n′′k
Pd

]
≈ 1

P 2
d

E[Pd cos2(∆θk)d2
kn
′2
c,k + Pd sin2(∆θk)d2

kn
′2
s,k

+ Pd sin(∆θk) cos(∆θk)d2
kn
′
c,kn

′
s,k] (135)

=
1

Pd
(cos2(∆θk)σ2 + sin2(∆θk)σ2) (136)

= σ2/Pd, (137)
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where (136) follows because n′c,k and n′s,k are independent, each with variance σ2 =

N0BL = Pn. Thus, in the high SNR case, the loop SNR is ρ = Pd/Pn, or

σ2
∆θ ≥

Pn
Pd

=
N0BL

Pd
=

BL

Pd/N0
. (138)

It can be seen that for high SNR the CRB is inversely proportional to Pd/N0, and in

fact it is equal to the CRB given in (131) for the residual carrier loop when modulation

is not present.

In the low SNR case, the signal cross terms in (134) may be ignored because they are

dominated by the noise product term. The product of two Gaussian random variables

is not Gaussian, but because a large number of such samples contribute to the filtered

error signal, by the central limit theorem it may be considered approximately Gaussian.

In this case we have

var

[
n′′k
Pd

]
≈ E

[
n′2c,kn

′2
s,k

P 2
d

]
(139)

=
1

P 2
d

E
[
n′2c,k

]
E
[
n′2s,k

]
(140)

= σ4/P 2
d , (141)

where (140) follows by the independence of n′c,k and n′s,k.

In the following development it is convenient to work with the samples zk of the discrete

model as shown in Figure 17, which now represent an average of Ns samples over

the symbol duration. The variance of the averaged noise samples is lower than the

variance of the individual samples by a factor of Ns, yielding the symbol-averaged

noise variance σ2
z = σ2/Ns. The normalized product samples xk , −zk/Pt = ∆θk −

n′′k/Pt contain the required error signal, as well as noise samples with variance σ2
x =

σ4/(N2
sP

2
t ). Recalling from [11] that the sample noise variance can be expressed in

terms of the sample integration time Ts, signal power to noise spectral level Pd/N0 as

σ2 = Pt/(2TsPd/N0), and with symbol duration T = NsTs, it follows that

σ2
x =

σ4

N2
sP

2
t

=
P 2
t

4N2
s T

2
s (Pd/N0)2P 2

t

=
1

4T 2(Pd/N0)2
. (142)

Letting Nc be the number of T second symbol times in an inverse loop bandwidth,

Nc = 1/(2BLT ), and substituting σ2
x into (114) and noting that x has been normalized

to have unit power, yields σ2
∆θ ≥ σ2

x/Nc, or in terms of T , Nc, and Pd/N0,

σ2
∆θ ≥

σ2
x

Nc
=

1

4NcT 2(Pd/N0)2
=

BL

2T (Pd/N0)2
. (143)

This expression is valid for the limiting case when the signal-noise cross terms dominate.

It can be seen that the CRB is inversely proportional to the square of Pd/N0 for the

low SNR case.

The Costas loop has been simulated over a range of Pd/N0 that covers both the low SNR

and high SNR regions, and its performance compared with the CRBs derived above:

43



20 40 60 80 100 120
10

−6

10
−4

10
−2

10
0

Pd/N0(dB-Hz)

σ
∆
θ
(R

a
d
)

 

 

CRB: High SNR

CRB: Low SNR

Simulation

Figure 26. Carrier tracking performance of Costas loop as a function of Pd/N0. Simulation points were

produced using random data with symbol rate Rs = 1 Msps, loop filter bandwidth BL = 100 Hz, and

loop update rate Ru = 105 Hz.
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(138) and (143). It can be seen in Figure 26 that the CRB expression in (143) is accurate

in the low SNR region of Pd/N0 < 50 dB-Hz, where σ∆θ ∝ Pd/N0, and likewise (138)

is accurate in the high SNR region of Pd/N0 > 60 dB-Hz, where σ∆θ ∝
√
Pd/N0. The

cross-over occurs when
BL

Pd/N0
=

BL

2T (Pd/N0)2
, (144)

or Pd/N0 = 1/(2T ) = Rs/2. For the example shown in Figure 26 with Rs = 1 Msps,

the cross over occurs at Pd/N0 = 57 dB-Hz.

D. Performance of DTTL for Downlink Data Tracking

For a conventional DTTL, the equation characterizing loop error is [12]

σ2
τ =

WBL

2S · Pd/N0
chips2. (145)

where the squaring loss is given by

S =

[
erf
(√

ES/N0

)
− W

2

√
ES/N0

π e−ES/N0

]2

1 + W
2 ES/N0 − W

2

[
1√
π
e−ES/N0 +

√
ES/N0 erf

(√
ES/N0

)]2 , (146)

where

erf(x) =
2√
π

∫ x

0

e−y
2

dy. (147)

The “stand-alone” (i.e., with perfect carrier tracking of the input signal) performance

of the DTTL is shown in Figure 27, where the fractional delay error was converted to

range error by noting that Tc = 10−6 seconds delay is equal to 300 meters of range at

the speed of light: the simulation points (red circles) follow the high-SNR CRB closely

above 53 dB-Hz. Squaring loss is also illustrated in Figure 27, for Pt/N0 < 53 dB-Hz,

which is considered to be the low-SNR region, with a tracking threshold evident at 47

dB-Hz, below which the DTTL loses lock.

E. Performance of Range Clock Tracking with DPLL or DTTL

It is possible to track the range clock with a DPLL, owing to the strong range-clock

component within the range code. The performance of DPLL tracking of the range

code is discussed below. Following that is a comparison of the DPLL and the DTTL

for tracking the range code.

1. DPLL Tracking of PN Chip Timing

Within the transponder, the baseband range-code signal that results from carrier de-

modulation is described in (73). The range code has a signal coefficient 2
√
Pr/π, and

the Q-channel has a noise spectral density (two-sided) of N0/4.
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Figure 27. Standard deviation of symbol tracking error using DTTL. Performance was evaluated both

with (end-to-end) and without (stand-alone) preceding carrier tracking loop jitter. Random BPSK data

modulation at 1 Msps was used with φd = 0.4π. The loop filter bandwidth was BL = 100 Hz, and loop

update rate Ru = 105 Hz.
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After normalizing by the signal coefficient, the phase error input to the NCO for cor-

rection is ∆θRC = θRC − θ̂RC. If the range code phase is constant and the filtered noise

is negligibly small, then ∆θRC ' 0 and the loops estimate of the range-code phase is

accurate: θ̂RC ' θRC. Note that there is no contamination from the residual phase error

of the carrier tracking loop, hence this estimate represents the range-code phase, as

required for Telemetry Ranging applications. The accuracy of the estimate depends on

the signal power and noise spectral level, as the following derivation demonstrates.

For a ranging signal with rectangular pulse shape, the SNR in the range-tracking DPLL

is

ρ =
8Pr

π2BLN0
, (148)

where BL is the loop bandwidth of the range-tracking DPLL. From (116), the CRB is

σ2
∆θRC

≥ 1

ρ
=

π2BL

8Pr/N0
radians2, (149)

or, since 2π radians corresponds to two chips,

σ2
∆θRC

≥ 1

ρ
=

BL

8Pr/N0
chips2. (150)

However, this does not take into account the fact that the range code is not a per-

fect square-wave, but contains occasional inversions of the C1 component, leading to

a power loss factor of approximately 0.9 for the T4B code. This loss factor should be

incorporated into the signal power, for a more accurate bound.

We note the importance of taking the imaginary part of ỹ(t) prior to mixing with the

range-clock frequency. If this had not been done, it is straightforward to show that

ỹ(t) · exp[−j2πfRCt] ≈
2
√
Pr
π

exp[j(∆θ(t) + θRC)] + n′(t), (151)

which would cause tracking performance to be degraded whenever ∆θ(t) 6= 0, even

when ∆θ(t)� 1. By including only the imaginary component of ỹ(t), the performance

is virtually independent of ∆θ(t), provided ∆θ(t) varies much slower than fRC so that

the approximation in (71) is accurate.

This loss factor has been incorporated into the CRB to obtain the performance of the

DPLL, modified to track compound PN codes that can be well approximated by a

square-wave. The results are shown in Figure 28, over a nominal operational range of

40–180 dB-Hz.

It can be seen in Figure 28 that the simulation results follow the CRB over a wide range

of SNR, namely 40 < Pr/N0 < 110 dB-Hz, encompassing the typical operating range of

50 to 60 dB-Hz commonly employed in the DSN. However, at higher values of Pr/N0, a

flooring effect on the rms phase error can be observed, as shown in Figure 28. The red

circles are simulation results.

This flooring is due to the fact that the product of the square-pulse compound PN

code with the complex exponential yields a high-frequency process which is eventually

47



20 40 60 80 100 120 140 160

10
−6

10
−4

10
−2

10
0

Pr/N0(dB-Hz)

P
N

 p
ha

se
 e

rr
or

 (
ra

ds
)

 

 

BL = 100 Hz

Tc = 10−6 sec

Ts = 10−7 sec

CRB

Simulation: without pp filtering

Simulation: with pp filtering

Figure 28. Performance of chip tracking loop as a function of Pr/N0, over the nominal operating range
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48



filtered but not completely eliminated by the loop with closed-loop bandwidth BL. After

taking the imaginary component of the product, we have
∣∣√Prφ(t) sin(2πfRCt)

∣∣, when

the compound PN code φ(t) is a square-wave function (a good approximation to the T4B

code). An example of the residual filtered product waveform is shown in Figure 29(e)

in the absence of additive noise (Pr/N0 = ∞): the zoomed version in Figure 29(f)

shows the residual product waveform, including the occasional glitches characteristic of

compound PN codes, which begins to dominate performance above 110 dB-Hz.

At lower SNR, the additive noise dominates, whereas the rms value of the additive noise

is comparable to the residual product term near the start of the floor (110 dB-Hz), as

illustrated by the phase error trajectories of Figures 29(a)-(d)

The residual product component has been ignored in the above analysis, since it is

negligible at most operating points of interest, however at very high SNR it becomes

the dominant component of the phase error if this product-term is allowed to enter the

tracking loop. Most of this high-frequency product component can be eliminated by

placing a properly designed low-pass filter after the product but before the loop. The

bandwidth of this low-pass filter is denoted BLP.

The constraints on the bandwidth BLP of this filter are that it must be significantly

greater than the close-loop bandwidth BL, so as not to change the design bandwidth, but

much less than the chip bandwidth Bc in order to filter it effectively: BL < BLP < Bc.

For the performance plot of Figure 28 the low-pass post-product filter bandwidth was

set to 500 Hz.

The impact of the 500 Hz post-product filter on the phase error trajectory of the PN

tracking loop can be seen in Figure 30.

With this filter, additive noise dominates at both low SNR (about 30 dB-Hz) and even

at 110 dB-Hz, where flooring begins to occur without post-product filtering, as seen

in Figures 30(a)-(d). A small component of the product waveform remains even in the

absence of additive noise, seen in Figures 30(e)-(f), however the phase error is dominated

by another phenomenon that appears to be random but is not due to random noise (since

no noise was added in the simulation). The cause for this fluctuation is the uneven

distribution of “glitches” or negative-going spikes that introduce an irreducible phase

noise into the output. Since the DPLL tracks the fundamental sinusoidal component of

the PN code, the number and distribution of glitches over a closed-loop coherence time

(the inverse of the closed-loop bandwidth) fluctuates as the loop filters the incoming

signal, effectively changing the phase of the fundamental Fourier component. This

fluctuation is due entirely to the structure of the PN code, and hence the phase error

signature remains the same from one simulation run to the next, provided the loop

bandwidth is fixed. This irreducible fluctuation of the phase of the fundamental Fourier

component creates another, much lower phase error floor starting at 150 dB-Hz, of

approximately 5× 10−7 radians rms, as can be seen in Figure 28 (black circles). With

chips, the ultimate limit on ranging accuracy imposed by this irreducible limit is (600
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Figure 29. Phase error trajectories of DPLL when tracking PN code T4B, without post-product

filtering.
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Figure 30. Phase error trajectories of DPLL when tracking PN code T4B, with 500 Hz post-product

filtering.
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meters/cycle)(5× 10−7) = 3× 10−4 meters, or 0.3 mm.

2. Comparison of DPLL and DTTL Tracking of PN Chip Timing

Figure 31 compares the performances of DPLL and DTTL in terms of chip tracking

jitter. This comparison was performed with the presence of a preceding carrier tracking

jitter. Note that when DPLL is used, only the imaginary component of the carrier

tracking output is pre-multiplied with a sinusoidal waveform before entering the DPLL

tracking loop, which leads to a performance advantage. Comparing (150) to (145), one
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Figure 31. Comparison of chip tracking performances of DPLL and DTTL. Modulation index

φr = 0.4π, loop filter bandwidth BL = 100 Hz, and Rc = 106 chips/sec, and update rate Ru = 105 Hz.

can see that the DPLL is better than the DTTL by a factor of 4W/S in its variance.

Since the DTTL in this example used W = 1/2, the DPLL variance is smaller than the

DTTL variance by a factor of two, for SNRs that have small squaring loss. The
√

2

difference between the DPLL and DTTL standard deviation can be seen in Figure 31,

for 60 < Pd/N0 < 130 dB-Hz.

F. Performance of Cascaded Performance of Carrier Tracking and Symbol Tracking Loops

When the residual phase error from the carrier tracking loop cannot be ignored, then the

impact of the phase error term on DTTL performance must be considered. If the carrier

is not fully suppressed and the DTTL is preceded by a carrier tracking loop that suffers
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from flooring due to modulation interference, the residual phase error from the carrier

tracking loop appears in the NCO signal, as the following argument demonstrates.

Since the chip rate is typically orders of magnitude greater than the loop bandwidth,

the residual phase error process can be considered constant over several chip intervals,

adding in a constant offset to both the in-phase and quadrature integrals. A slowly

varying offset does not impact the transition detection statistic because the second

in-phase integral is subtracted from the first, hence the common offset is nulled by

the transition detector. However, the quadrature (or mid-phase) statistic contains the

integral of the residual phase over the quadrature interval, which then adds directly to

the error signal. Therefore, if the NCO output is used to evaluate DTTL performance,

a flooring effect may be observed at high SNR, due to flooring in the carrier tracking

loop when modulation interference is significant.

Figure 32 shows the chip timing accuracy using DPLL loop. The performance is evalu-

ated both with and without the presence of the carrier tracking jitter. The simulation

results agree really well with analytical approximations based on the CRB. The modu-

lation index φr was 0.4π for this experiment.
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Figure 32. Chip tracking performance using DPLL with loop filter bandwidth BL = 100 Hz and update

rate Ru = 105 Hz. Tracking performance with (end-to-end) and without (stand-alone) presence of

carrier tracking jitter are compared with CRBs.

Examples of the performance of a system consisting of a cascaded carrier tracking loop

followed by a DTTL symbol synchronizer are shown in Figure 33, illustrating the flooring
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effect in the NCO output of the DTTL when φr = 0.4π, for two cases of interest: a)

when the flooring is due to interference from a PN code, as would be observed at the

spacecraft in the uplink leg of the telemetry ranging application; and b) when the

flooring is due to random data received on the ground, if a residual carrier is used on

the downlink.

In the simulation results shown in Figure 33, the loop bandwidth was set to 100 Hz for

both the carrier tracking loop and the DTTL: the chip rate was set to 106 chips per

second, with 10 samples per chip, and the loop update rate was set to 105. It is apparent

in Figure 33, that flooring occurs at approximately 20 dB lower Pd/N0 with random

data than with the PN code, and that flooring due to random data is approximately

a factor of ten greater when measured in terms of fractional chip errors, than for PN

codes. This is attributed to the fact that the spectral level of random data is flat in the

frequency region of the closed-loop bandwidth, whereas the spectrum of the PN code

has a significant notch at low frequencies, thus contributes less interference to the loop.
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Figure 33. Performance of cascaded carrier tracking loop (DPLL) followed by a DTTL for both PN

code and random data modulation with φr(d) = 0.4π. The chip rate or symbol rate was set to 1 Mbps,

loop filter bandwidth BL = 100 Hz , and loop update rate Ru = 105 Hz. These parameters are the

same for both DPLL and DTTL in the cascaded system.
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VIII. Conclusions

In this article we described the operation of the major receiver functions on the space-

craft and the ground that are required to support telemetry ranging. Many of these

are standard tracking loops already in use in JPL’s flight and ground radios. We first

described these functions in continuous-time form, which simplifies the exposition and is

easier to relate to standard analog loops of the same type. Then we described digitized

versions of each of the major functions, as we’ve implemented them in Matlab soft-

ware. We’ve built two useful software tools from these functional blocks, one allowing

the user to simulate the end-to-end operation of a telemetry ranging system, and the

other allowing the software to directly process data recorded from a telemetry ranging

system’s spacecraft and ground receivers. Finally, we derived Cramér-Rao bounds to

characterize the accuracy of the various tracking loops, and compared these limits to

numerical results obtained from running the software simulation tool.
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